

OSSERVATORIO ASTROFISICO DI CATANIA

Selezione e posizionamento dei rivelatori SiPM sulle PDM di test

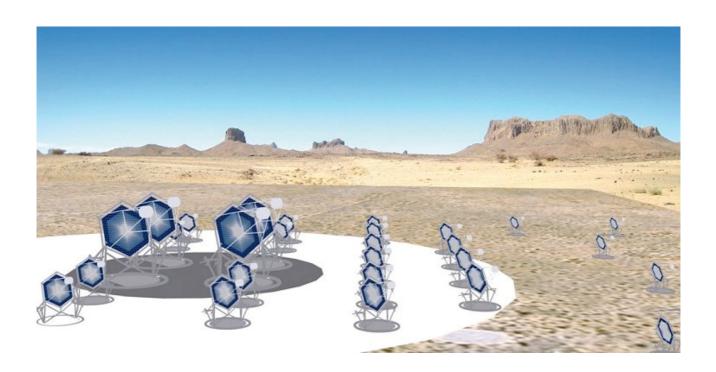
Device: S11828-3344M monolithic array 16ch (4x4)

Osservatorio Astrofisico di Catania

G.ROMEO (1)

(1) INAF - Osservatorio Astrofisico di Catania

Rapporti interni e tecnici N.02/2014


Code: ASTRI-TR-OACT-3200-010

Issue:

DATE

13/02/2014 Page:

Selezione e posizionamento dei rivelatori SiPM sulle PDM di test

Giuseppe Romeo Prepared by: Signature: Date: 13/02/2014 Name: Reviewed by: Name: Giovanni Bonanno Signature: Date: 13/02/2014 Approved by: Name: Giovanni Bonanno Signature: 13/02/2014 Date:

Code: ASTRI-TR-OACT-3200-010

Issue:

DATE **13/02/2014** Page: 2

TABLE OF CONTENTS

DIS	TRIBUTION LIST	3
DO	CUMENT HISTORY	4
LIS	T OF ACRONYMS	5
API	PLICABLE DOCUMENTS	5
REI	FERENCE DOCUMENTS	5
1.	INTRODUZIONE	6
2.	SCOPO	7
3.	Criterio di selezione	8
4.	Scelta e Posizionamento degli MPPC sulle PDM test	9
5.	PDM Test - 01	10
6.	PDM Test – 02	11
7.	PDM Test - 03	12
8.	LEGENDA	13
9	CONTACTS	14

Code: ASTRI-TR-OACT-3200-010

Issue:

DATE **13/02/2014** Page: 3

DISTRIBUTION LIST

ASTRI mailing list	astri@brera.inaf.it
Bruno Sacco	bruno.sacco@iasf-palermo.inaf.it
Giovanni Pareschi	giovanni.pareschi@brera.inaf.it
Stefano Vercellone	stefano@ifc.inaf.it
Rodolfo Canestrari	rodolfo.canestrari@brera.inaf.it
Osvaldo Catalano	osvaldo.catalano@iasf-palermo.inaf.it
Enrico Cascone	cascone@na.astro.it
Giovanni La Rosa	larosa@ifc.inaf.it
Giovanni Bonanno	gbo@oact.inaf.it
Sergio Billotta	sergio.billotta@oact.inaf.it
Patrizia Caraveo	pat@lambrate.inaf.it
Massimiliano Belluso	mbelluso@oact.inaf.it
Davide Marano	davide.marano@oact.inaf.it
Alessandro Grillo	agrillo@oact.inaf.it
Giuseppe Romeo	giuseppe.romeo@oact.inaf.it
Luca Stringhetti	luca@iasf-milano.inaf.it
Rachele Millul	rachele.millul@brera.inaf.it
Mauro Fiorini	fiorini@lambrate.inaf.it
Salvatore Garozzo	salvatore.garozzo@oact.inaf.it
Domenico Impiombato	domenico.impiombato@ifc.inaf.it
Giuseppe Sottile	sottile@ifc.inaf.it
Salvatore Giarrusso	jerry@ifc.inaf.it
ASTRI mailing list	astri@brera.inaf.it

d	O. L.	٠.
ŧ		Á
	INAF	- 8
B		- 7

Code: ASTRI-TR-OACT-3200-010

Issue:

DATE **13/02/2014** Page: 4

DOCUMENT HISTORY

Version	Date	Modification
1.0	Date	first version
		update

Code: ASTRI-TR-OACT-3200-010

Issue:

DATE

13/02/2014 Page:

5

LIST OF ACRONYMS

SiPM Silicon Photo Multiplier

MPPC Multi Pixel Photon Counter

SPAD Single Photon Avalanche Diode

G-APD Geiger-mode Avalanche Photo-Diode

HV High Voltage

FEE Front-End Electronics

BEE **Back-End Electronics**

FPGA Field Programmable Gate Array

PDM **Photon Detection Module**

Printed Circuit Board PCB

OACT Osservatorio Astrofisico di Catania

IFC-PA Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo

SW Software

ASIC Application Specific Integrated Circuit

EASIROC Extended Analogue Silicon-pm Integrated Read-Out Chip

Op-AMP **Operational Amplifier**

APPLICABLE DOCUMENTS

[AD1] AD1

REFERENCE DOCUMENTS

- ASTRI Camera PDM: grouping four single pixels of each monolithic MPPC 4433 in four macro-pixels - code: ASTRI-TR-OACT-3200-008
- MPPCs Electrical Characterization Report code: ASTRI-TR-OACT-3200-009

Code: ASTRI-TR-OACT-3200-010

Issue:

DATE | 13/02/2014 | Page: | 6

1. **INTRODUZIONE**

In questo documento viene illustrata la procedura per la selezione e la disposizione dei dispositivi SiPM sulle PDM da utilizzare per i test di laboratorio.

Il criterio di selezione è stato già ampiamente discusso nel report "ASTRI Camera PDM: grouping four single pixels of each monolithic MPPC 4433 in four macro-pixels" code: ASTRI-TR-OACT-3200-008 ma che nel presente documento verrà richiamato.

Code: ASTRI-TR-OACT-3200-010

Issue:

DATE

13/02/2014 Page:

7

2. **SCOPO**

Si vogliono eseguire dei test preliminari sulle schede PDM prodotte in forma prototipale prima di arrivare alla produzione finale di tutte le schede: Per questo motivo si è deciso di far realizzare 4 schede PCB e di farne popolare solo 3 in modo da avere 2 PDM completi con 16 MPPC e una scheda con 4 MMPC montati solo nella parte centrale.

Per questo primo test sono stati selezionati dei chip che hanno caratteristiche elettriche non ottimali rispetto a quelli che servono per la camera. Nel documento ASTRI-TR-OACT-3200-008 sono stati riportati tutti i chip monolitici che devono andare sulle varie board e quelli che servono per i test.

Code: ASTRI-TR-OACT-3200-010

Issue:

DATE

13/02/2014 Page:

8

3. Criterio di selezione

Al fine di stabilire la distribuzione moduli PDM sul piano focale della camera e le matrici monolitiche degli MPPC su ogni singola PDM abbiamo introdotto un criterio di selezione basato sulla deviazione della tensione operativa di ogni pixel che costituisce il macro-pixel rispetto alla media delle singole tensioni operative di ogni pixel. In particolare i criteri che abbiamo definito sono:

- ΔV> 90mV MPPC posizionato sulla PDM Test;
- 70mV <ΔV <90mV MPPC posizionato sulla PDM Test;
- 66mV <ΔV <70mV MPPC posizionato sulla PDM in periferia;
- ΔV <66mV MPPC posizionato nella zona centrale del piano focale;

Come precedentemente detto, il criterio di selezione è basato sulla tensione di esercizio di ogni pixel che formano il macro-pixel. Abbiamo selezionato i valori e gli intervalli di ΔV studiando la variazione della DCR e soprattutto il quadagno rispetto alla variazione di un intorno della tensione operativa suggerita da Hamamatsu alla quale corrisponde un guadagno di 7.5 x E5.

Vedi report "ASTRI Camera PDM: grouping four single pixels of each monolithic MPPC 4433 in four macro-pixels" code: ASTRI-TR-OACT-3200-008.

Code: ASTRI-TR-OACT-3200-010

Issue:

DATE

13/02/2014 Page:

9

4. Scelta e Posizionamento degli MPPC sulle PDM test

Seguendo il criterio di selezione, la scelta dei dispositivi monolitici per le PDM Test è ricaduta sui monolitici la cui ΔV presentava valori maggiori di 90mV per arrivare, all'esaurimento di questi ultimi, a quelli con ΔV compresa tra 70mV e 90mV.

In particolare attraverso la tabella Excel che mostra l'intera lista dei 528 MPPCs in termini di Vop e di ΔV (vedere Report: ASTRI-TR-OACT-3200-008) si è scelto di posizionare i SiPM con valori di ΔV maggiori o uguali a 90mV nella periferia delle PDM e quelli con valori minori di 90mV nella parte centrale.

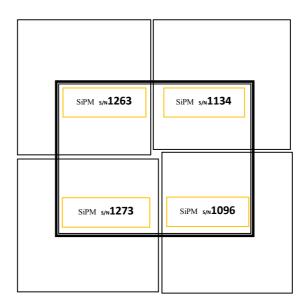
Questa scelta ci permetterà di testare al meglio le caratteristiche elettriche e ottiche di quello che costituirà l'intero piano focale della camera ASTRI.

Sono stati scelti e posizionati in tal modo 36 dispositivi monolitici per la realizzazione di tre PDM Test così costituite:

PDM Test – 01 = 4 MPPC posizionati nella parte centrale della PDM

PDM Test – 02 e PDM Test -03 = 16 MPPC ognuna ovvero due PDM complete.

Nelle sezioni 5, 6 e 7 sono riportate le mappe delle tre PDM di test con le relative tensioni operative da dare ai singoli macro pixel al fine di avere un guadagno per ognuno di 7.5xE5.



Code: ASTRI-TR-OACT-3200-010

Issue:

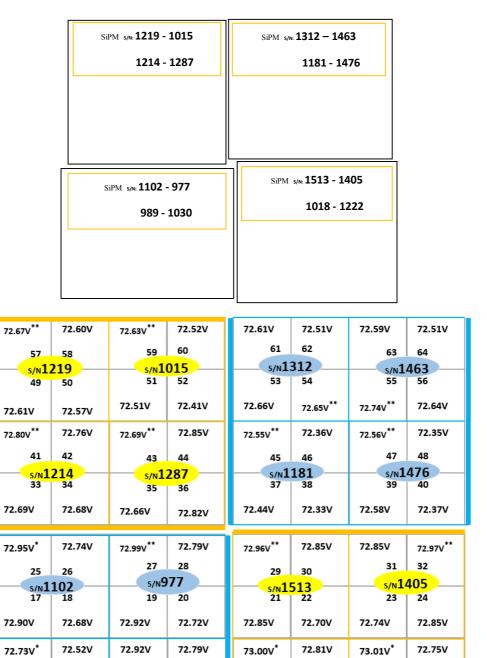
DATE | **13/02/2014** | Page: | 10

5. PDM Test - 01

57 58 49 50	59 51	60 52	61 53	62 54	63 64 55 56
33 34	72.36V 43 5/N12 35 72.47V	72.21V 44 2 <mark>63</mark> 36 72.25V*	72.71V [*] 45 5/N1 37 72.66V	72.54V 46 134 38 72.51V	39 40
25 26	72.08V 27	72.02V 28	72.11V 29 s/N 1	72.03V 30	31 32
17 18	5/N12 19 72.20V*	273 20 72.12V	72.26V*		23 24

^{*} Mpixel con ΔV > 90mV

^{**}Mpixel con $90mV < \Delta V < 70mV$


Code: ASTRI-TR-OACT-3200-010

Issue:

DATE | 13/02/2014 | Page:

11

6. PDM Test - 02

72.50V

10

s/N989

72.72V*

13

72.94V

s/N1018

14

72.79V

15 16

s/N1222

73.00V*

72.70V

12

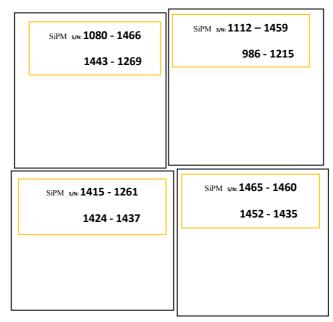
72.78V

s/n1030

72.96V*

^{*} Mpixel con ΔV > 90mV

^{**}Mpixel con $90mV < \Delta V < 70mV$


Code: ASTRI-TR-OACT-3200-010

Issue:

DATE | 13/02/2014 | Page: |

12

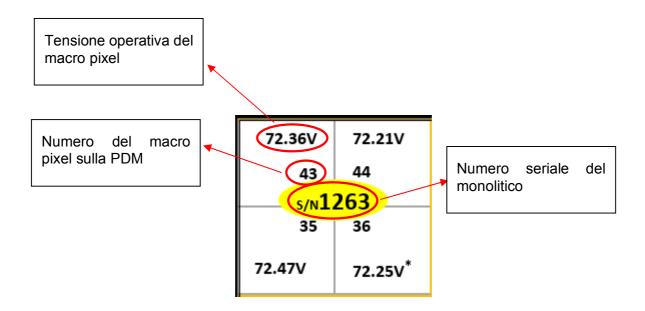
7. PDM Test - 03

72.01V	72.14V**	72.19V ^{**}	72.38V	72.32V	72.24V	72.38V	72.50V**
57	58	59	60	61	62	63	64
s/N1080		s/N1466		s/N1112		s/N1459	
	50	51	52	53	54	55	56
72.00V	72.11V	72.09V	72.21V	72.45V**	72.37V**	72.51V**	72.56V
72.01V**	72.20V	72.15V	72.11V	72.41V**	72.34V	72.44V**	72.39V
41	42	43	44	45	46	47	48
s/N 1	443	s/n1269		s/N ^C	986	s/N1215	
33	34	35	36	37	38	39	40
71.88V	72.05V	72.32V ^{**}	72.28V	72.27V	72.24V	72.34V	72.30V
				_			
71.53V**	71.70V**	71.73V	71.91V	72.03V	72.13V	72.05V	72.21V**
71.53V** 25			71.91V 28	1 - 1 - 1	72.13V 30		72.21V ^{**} 32
25	26	27	28	29	30		32
25	26 415		28	29 s/n 1		31	32 <mark>460</mark>
25 s/n1 17	26 415	27 s/n 1	28 261	29 s/n 1	30 465	31 S/N 1	32 460
25 s/n1 17	26 415 18	27 s/n 1 19	28 261 20	29 s/n <mark>1</mark> , 21	30 465 22	31 s/n 1 23	32 460 24
25 s/N1 17 71.67V	26 415 18 71.82V 71.19V**	27 s/n1 19 71.76V	28 261 20 71.95V**	29 s/N1 21 72.19V	30 465 22 72.20V**	31 s/n1 23 72.15V	32 460 24 72.34V**
25 s/N1 17 71.67V 71.07V	26 415 18 71.82V 71.19V**	27 S/N1 19 71.76V 71.42V	28 261 20 71.95V** 71.56V**	29 s/N1 21 72.19V 71.73V**	30 465 22 72.20V**	31 s/N1 23 72.15V 72.00V	32 460 24 72.34V** 72.06V**
25 s/N1 17 71.67V 71.07V	26 415 18 71.82V 71.19V**	27 S/N1 19 71.76V 71.42V	28 261 20 71.95V** 71.56V**	29 s/N1 21 72.19V 71.73V** 13 s/N1	30 465 22 72.20V** 71.88V**	31 s/N1 23 72.15V 72.00V	72.34V** 72.06V** 16

^{*} Mpixel con ΔV > 90mV

^{**}Mpixel con $90mV < \Delta V < 70mV$

Code: ASTRI-TR-OACT-3200-010


Issue:

DATE **13/02/2014** Page:

13

LEGENDA 8.

Di seguito viene illustrato il significato dei valori numerici riportati nelle mappe delle tre PDM.

14

 Code: ASTRI-TR-OACT-3200-010
 Issue:
 1
 DATE
 13/02/2014
 Page:

9. CONTACTS

The team working on the electronic design of the ASTRI camera is composed by people from INAF's Catania Astrophysical Observatory and Palermo IFC. It is also referred to as the Electronics Camera Team.

Giovanni Bonanno	gbo@oact.inaf.it	OACT Catania
Massimiliano Belluso	mbelluso@oact.inaf.it	OACT Catania
Sergio Billotta	sergio.billotta@oact.inaf.it	OACT Catania
Giuseppe Romeo	giuseppe.romeo@oact.inaf.it	OACT Catania
Salvatore Garozzo	salvatore.garozzo@oact.inaf.it	OACT Catania
Alessandro Grillo	agrillo@oact.inaf.it	OACT Catania
Davide Marano	davide.marano@oact.inaf.it	OACT Catania
Osvaldo Catalano	osvaldo.catalano@iasf-palermo.inaf.it	IFC Palermo
Giovanni La Rosa	larosa@ifc.inaf.it	IFC Palermo
Giuseppe Sottile	sottile@ifc.inaf.it	IFC Palermo
Salvatore Giarrusso	jerry@ifc.inaf.it	IFC Palermo
Domenico Impiombato	domenico.impiombato@ifc.inaf.it	IFC Palermo